__Electrical Engineering ____Syllabus __

__Paper – I__

**Circuit Theory**: Circuit components; network graphs; KCL, KVL; circuit analysis methods: nodal analysis, mesh analysis; basic network theorems and applications; transient analysis: RL, RC and RLC circuits; sinusoidal steady state analysis; resonant circuits; coupled circuits; balanced 3-phase circuits; Two-port networks.**Signals & Systems**: Representation of continuous–time and discrete-time signals & systems; LTI systems; convolution; impulse response; time-domain analysis of LTI systems based on convolution and differential/difference equations. Fourier transform, Laplace transform, Z-transform, Transfer function. Sampling and recovery of signals DFT, FFT Processing ofanalog signals through discrete-time systems.**E.M. Theory**: Maxwell’s equations, wave propagation in bounded media. Boundary conditions, reflection and refraction of plane waves. Transmission line: travelling and standing waves, impedance matching, Smith chart.**Analog Electronics**: Characteristics and equivalent circuits (large and small-signal) of Diode, BJT, JFET and MOSFET. Diode circuits: clipping, clamping, rectifier. Biasing and bias stability. FET amplifiers. Current mirror; Amplifiers: single and multi-stage, differential, operational, feedback and power. Analysis of amplifiers;frequencyresponse of amplifiers. OPAMP circuits. Filters; sinusoidal oscillators:criterion for oscillation; single-transistor and OPAMP configurations. Function generators and wave-shaping circuits. Linear and switching power supplies.**Digital Electronics**: Boolean algebra; minimization ofBoolean functions ; logic gates; digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinational circuits: arithmetic circuits, code converters, multiplexers and decoders. Sequential circuits: latches and flip-flops, counters and shift-registers. Comparators, timers, multivibrators. Sample and hold circuits, ADCs and DACs. Semiconductor memories. Logic implementation using programmable devices (ROM, PLA, FPGA).**Energy Conversion**: Principles of electromechanical energy conversion: Torque and emf in rotating machines. DC machines: characteristics and performance analysis; starting and speed control of motors; Transformers: principles of operation and analysis; regulation, efficiency; 3-phase transformers. 3-phase induction machines and synchronous machines: characteristics andpreformance analysis; speed control.**Power Electronics and Electric Drives:**Semiconductor power devices: diode, transistor, thyristor,triac , GTO and MOSFET–static characteristics and principles of operation; triggering circuits;hase control rectifiers; bridge converters: fully-controlled and half-controlled; principles of thyristor choppers and inverters; DC-DC converters; Switch mode inverter; basic concepts of speed control of DC and AC Motordrives applications of variable-speed drives.**Analog Communication:**Random variables: continuous, discrete; probability, probability functions. Statistical averages; probability models; Random signals and noise: white noise, noise equivalent bandwidth;signal transmission with noise; signal to noise ratio. Linear CW modulation: Amplitude modulation: DSB, DSB-SC and SSB. Modulators and Demodulators; Phase and Frequency modulation: PM & FM signals; narrowband FM; generation & detection of FM and PM, Deemphasis, Preemphasis. CW modulation system:Superhetrodyne receivers, AM receivers, communication receivers, FM receivers, phase locked loop, SSB receiver Signal to noise ratio calculation for AM and FM receivers.

__Paper – II__

**Control Systems**: Elements of control systems;blockdiagram representation; open-loop & closed-loop systems; principles and applications offeed-back . Control system components. LTI systems: time-omain and transform-domain analysis. Stability: Routh Hurwitz criterion, root-loci,Bodeplots and polar plots, Nyquist’s criterion; Design of lead-lad compensators. Proportional, PI, PID controllers.Statevariable representation and analysis of control systems.

**Microprocessors and Microcomputers**: PC organisation;

CPU, instruction set, register set, timing diagram, programming,

**Measurement and Instrumentation**: Error analysis; measurement of current, voltage, power, energy,power-factor , resistance, inductance, capacitance and frequency; bridge measurement. Signal conditioning circuit; Electronic measuring instruments: multimeter, CRO, digital voltmeter, frequency counter, Q-meter, spectrum-analyzer,distortion-meter . Transducers: thermocouple, thermistor, LVDT, strain-gauge, piezo-electric crystal.**Power Systems:**Analysis and Control: Steady-state performance of overhead transmission lines and cables; principles of active and reactive power transfer and distribution; per-unit quantities; bus admittance and impedance matrices; load flow; voltage control and power factor correction; economic operation; symmetrical components, analysis of symmetrical and unsymmetrical faults.Concept of system stability: swing curves and equal area criterion. Static VAR system. Basic concepts of HVDC transmission.**Power System Protection**: Principles of overcurrent, differential and distance protection.Concept of solid state relays. Circuit breakers.Computer aided protection: Introduction; line bus, generator, transformer protection; numeric relays and application of DSP to protection.**Digital Communication**: Pulse code modulation (PCM), differential pulse code modulation (DPCM), delta modulation (DM), Digital modulation and demodulation schemes: amplitude, phase and frequency keying schemes (ASK, PSK, FSK). Error control coding: error detection and correction, linear block codes, convolution codes. Information measure and source coding. Data networks, 7-layer architecture.